:: Roughly six rambling paragraphs of motivation for 7-limit just intonation
We mostly play instruments that are harmonic, meaning that sounded notes have strong identifiable base frequencies in addition to strongly present spectral spikes, or "partials", at frequencies which are integer multiples of the base frequency - so called harmonic partials or harmonics. We can sound multiple notes against each other that are related by simple frequency ratios ("just intonation") to produce nice combination-sounds because of this. If you have instruments whose partials are inharmonic, then just intonation stops being the right framework for producing euphonious polyphony among them.
In just intonation, you can get a fairly good scale using frequency ratios with prime factors of just 2 and 3. The interval system that abstracts this frequency ratio space is called rank-2 interval space and it's what almost all western musicians learn - it has intervals like the perfect fourth, the minor second, the augmented sixth, and the diminished seventh. Purely tuning rank-2 intervals is also called "Pythagorean tuning". The major, minor, and chromatic scales you get by purely tuning rank-2 intervals are fairly good, but not great. Most tuning systems you're familiar with, like 12-tone equal temperament and quarter comma meantone, are a patch for this: by mistuning rank-2 interval space a little, you can get some notes to sound like they have simpler and prettier ratios with factors of (2, 3, 5) instead of more complex ratios with just factors of (2, 3). For example, if you tune the rank-2 major seventh purely, you get a frequency ratio of 243/128, whereas the rank-3 major seventh is more simply 15/8. In addition to being have a smaller numerator and denominator, 15/8 does in fact sound better when sounded against the unison. Quarter comma meantone and 12-TET slide the major seventh toward its 5-limit value.
I contend that major, minor, and chromatic scales of western music theory are fundamentally rank-3, in that they're correctly abstracted from frequency ratios with factors of 5. Our music is most naturally represented with rank-3 intervals. There are many reasons why we use mistuned rank-2 intervals instead of purely tuned rank-3 intervals to represent western music - some of which are convenience of mental representation, convenience of symbolic representation on written scores, convenience of instrument construction, and convenience of performance. And at this point, people are so used to mistuned rank-2 intervals, that lots of people don't even like the sound of purely tuned rank-3 intervals as much, so called 5-limit just intonation.
But I believe western music is fundamentally rank-3, and I'm committed to rewriting music theory to reflect this. We've already got the convenient theory written, now it's time to do it right.
If harmony sounds better when we consider prime factors of 5 in our frequency ratios, what about higher primes? Is there a use for factors of 7?
The seventh harmonic sounds pretty good sounded against unison. It's definitely not a piano note, but it's not offensive. If anything it's kind of too pure? Like if you're used to 12-TET you'll be like, "Wait a second, why isn't this beating slightly? I'm use to slight beating." Also, barbershop quartets often use the seventh harmonic, and let's be honest, barbershop quartet music is sometimes technically impressive, but it's not really good. Some instruments are designed to suppress reduce spectral content near the 7th harmonic and its multiples: piano hammers are placed along the string that way. But despite the fact that some instruments suppress it, and that barbershop quartets aren't transcendently beautiful, I think think the 7th harmonic and other septimal intervals are pretty cool and valuable/useful in just intonation. "Blue notes" in blues which fall between the usual piano keys are often analyzed as being septimal. Like blues guitarists don't just bend their strings to make ornamental variations in their melodies - they can be observed bending reliably to the same non-12-TET notes, and septimal frequency ratios are one framework for understanding the function of those notes. I've also used septimal intervals productively in analyzing middle eastern microtonal music. As we go to higher primes, they definitely become less relevant: you can't really pluck a 13th harmonic on a string, for example. Higher harmonics also get weaker in magnitude/volume as you go higher, so it gradually becomes unlikely that they're contributing perceptually to the timbre of instruments or the timbre of harmonies. Also people have imperfect pitch discrimination, so I think it stops making much sense to analyze pitches past a certain granularity - like even if it were loud enough to hear, is the 29th harmonic different enough from intervals available with harmonics up to 23 that we should name it that way? Or more concretely, trained people can only hear like 3 to 5 cents of frequency difference in a quiet laboratory setting, but my guess is that most people in noisy environments don't do much better than 20 cents. If an octave is 1200 cents, and there are perhaps 12 simple frequency ratios within an octave that are associated with each prime, then we can cover all the perceptually distinguishable frequencies with 1200 / 20 / 12 = 5 primes; [2, 3, 5, 7, 11]. Even if allow finer discrimination of frequency ratios in this model, it's not obvious to me that people will use frequency ratios differently just because they can notice a difference - a 5 cent sharp perfect fourth is still just going to be used like a perfect fourth. The fact that different tuning systems in wide use (or former/historic wide use) will place intervals more than 5-cents away from their pure values proves that our functional-assignments aren't as fine as our pitch discrimination.
Anyway, I recognize that the 11th harmonic contributs audibly to musical timbre. You can use audio filters to amplify or diminish the magnitude of a the 11th harmonic of a sound to experience its contribution and train yourself to recognize it - and it is fairly present and important, I'd say, having done a little of this training. So there's logical room for a theory of how to use 11-limit frequency ratios harmonically. But also the 11th harmonic sounded against the unison sounds pretty bad to my ear, while the 7th harmonic sounds quite good. So I myself am strongly motivated to understand septimal harmony, while the 11th harmonic and higher I mostly leave for other people to theorize about. The 7th harmonic, which sounds good/cool/interesting, and is also definitely useful for analyzing microtones beyond 5-limit just intonation, which are not uncommon in human music, even if they're not in the core of major/minor/chromatic notes that we use for most daily music in the west.
: Investigating 7-limit Just Intonation
...
I started by making a little scale with septimal intervals and finer divisions than the chromatic. And then I picked three random distinct intervals from the scale to make a chord and listened to them to judge their consonance. I also removed the lowest note from all the intervals of the chord, so that below they're all have P1 in the bass. This made for a lot more intervals in my chord space than were in my original scale. Which is fine. It means I did a more thorough investigation of septimal intervals. Anyway, then I rated the chords as {"good", "okay", or "bad"} in terms of consonance. And I did that at least four times for each chord below and many others that were too ugly to include. Then I associated those categories with {3, 2, 1} so I could take an average and sort numerically. And here below we have, a bunch of chords with septimal intervals sorted by how consonant I thought they were. Higher values for higher consonance.
...
3.0 : ('P1', 'm3', 'SpM6')
3.0 : ('P1', 'SpGrA5', 'SpA9')
3.0 : ('P1', 'SpA6', 'M10')
3.0 : ('P1', 'SpA4', 'SpM6')
3.0 : ('P1', 'SpA3', 'M6')
3.0 : ('P1', 'Sbd4', 'Sbd6')
3.0 : ('P1', 'SbAcd4', 'AcM6')
3.0 : ('P1', 'P5', 'SbAcd11')
3.0 : ('P1', 'M6', 'SbAc11')
2.8333333333333335 : ('P1', 'SpGrA5', 'M10')
2.8333333333333335 : ('P1', 'P4', 'Sbd7')
2.8 : ('P1', 'Sbm3', 'Gr5')
2.8 : ('P1', 'Sbd5', 'M6')
2.8 : ('P1', 'Sbd3', 'Sbd5')
2.8 : ('P1', 'SbSb4', 'SbSbm6')
2.8 : ('P1', 'AcM2', 'Sbd5')
2.75 : ('P1', 'SpGrM3', 'SpM6')
2.75 : ('P1', 'SpA6', 'P8')
2.75 : ('P1', 'SpA3', 'SpA6')
2.75 : ('P1', 'SpA2', 'SpGrA5')
2.75 : ('P1', 'Sbd5', 'Sbd7')
2.75 : ('P1', 'SbAcd4', 'SbAcm6')
2.75 : ('P1', 'SbAcd4', 'AcM9')
2.7142857142857144 : ('P1', 'm7', 'SbAcd11')
2.7142857142857144 : ('P1', 'SpM6', 'SpA11')
2.7142857142857144 : ('P1', 'Grm3', 'Sbd6')
2.6666666666666665 : ('P1', 'm3', 'SpA4')
2.6666666666666665 : ('P1', 'm10', 'SpA11')
2.6666666666666665 : ('P1', 'm10', 'Sbd12')
2.6666666666666665 : ('P1', 'SpGr5', 'SpM6')
2.6666666666666665 : ('P1', 'SpA3', 'SpM6')
2.6666666666666665 : ('P1', 'Sbm7', 'M13')
2.6666666666666665 : ('P1', 'Grm7', 'Sbd10')
2.6 : ('P1', 'SpM6', 'SpA9')
2.6 : ('P1', 'SpGrM3', 'm6')
2.6 : ('P1', 'Sbm3', 'M6')
2.5 : ('P1', 'm3', 'Sbd5')
2.5 : ('P1', 'SpSpM3', 'M6')
2.5 : ('P1', 'SpA4', 'm6')
2.5 : ('P1', 'Sbd7', 'AcM9')
2.5 : ('P1', 'SbAcd4', 'P5')
2.5 : ('P1', 'SbAcd11', 'AcM13')
2.5 : ('P1', 'M3', 'SpGrA5')
2.5 : ('P1', 'AcA2', 'Sbm7')
2.4285714285714284 : ('P1', 'SpA2', 'SpA4')
2.4 : ('P1', 'm3', 'Sp5')
2.4 : ('P1', 'd8', 'SbAcd11')
2.4 : ('P1', 'SpGrm3', 'SpGr5')
2.4 : ('P1', 'SpA2', 'M6')
2.4 : ('P1', 'Sbd4', 'Grm7')
2.4 : ('P1', 'SbAcd4', 'm7')
2.3333333333333335 : ('P1', 'm3', 'SpA5')
2.3333333333333335 : ('P1', 'd4', 'Sbd6')
2.3333333333333335 : ('P1', 'SpM2', 'SpA4')
2.3333333333333335 : ('P1', 'SpM2', 'SpA3')
2.3333333333333335 : ('P1', 'SpA5', 'P8')
2.3333333333333335 : ('P1', 'SpA3', 'P8')
2.3333333333333335 : ('P1', 'Sbm7', 'Sbm10')
2.3333333333333335 : ('P1', 'Sbm7', 'M10')
2.3333333333333335 : ('P1', 'Sbd8', 'P11')
2.3333333333333335 : ('P1', 'Sbd5', 'Grd7')
2.3333333333333335 : ('P1', 'Sbd12', 'M13')
2.3333333333333335 : ('P1', 'SbSbm7', 'SbSbAc11')
2.3333333333333335 : ('P1', 'SbAc4', 'Sbm7')
2.3333333333333335 : ('P1', 'P4', 'Sbm6')
2.3333333333333335 : ('P1', 'AcM6', 'SbAcd8')
2.2857142857142856 : ('P1', 'SpA4', 'SpM9')
2.25 : ('P1', 'm7', 'SpA8')
2.25 : ('P1', 'SpGrm7', 'SpM9')
2.25 : ('P1', 'SpGr5', 'M10')
2.25 : ('P1', 'SpA4', 'SpGrA5')
2.25 : ('P1', 'SpA2', 'SpGr5')
2.25 : ('P1', 'Sbd7', 'P8')
2.25 : ('P1', 'SbAc11', 'SbAcM13')
2.25 : ('P1', 'Sb4', 'Sbm6')
2.25 : ('P1', 'P5', 'Sbd7')
2.2 : ('P1', 'm3', 'SbAcm6')
2.2 : ('P1', 'SpGrm3', 'SpGrm7')
2.2 : ('P1', 'SpGrM3', 'SpA4')
2.2 : ('P1', 'Sp5', 'SpGrm7')
2.2 : ('P1', 'Sbm3', 'P5')
2.2 : ('P1', 'Sbm3', 'A5')
2.1666666666666665 : ('P1', 'm3', 'SpGrm7')
2.1666666666666665 : ('P1', 'Grd5', 'Sbd8')
2.0 : ('P1', 'm6', 'SpGrM7')
2.0 : ('P1', 'SpSpA2', 'SpSpGrA5')
2.0 : ('P1', 'SpM6', 'SpM9')
2.0 : ('P1', 'SpM3', 'SpGrm7')
2.0 : ('P1', 'SpM3', 'SpGrA5')
2.0 : ('P1', 'SpM3', 'SpA5')
2.0 : ('P1', 'SpM3', 'P5')
2.0 : ('P1', 'SpM2', 'SpGrM7')
2.0 : ('P1', 'SpGrm3', 'SpA4')
2.0 : ('P1', 'SpGrM7', 'SpA9')
2.0 : ('P1', 'SpGrM7', 'M10')
2.0 : ('P1', 'SpGrM3', 'SbGrm7')
2.0 : ('P1', 'SpGr5', 'SpA9')
2.0 : ('P1', 'SpGr5', 'P8')
2.0 : ('P1', 'SpA5', 'SpA11')
2.0 : ('P1', 'SpA3', 'SpA9')
2.0 : ('P1', 'Sp4', 'SpM6')
2.0 : ('P1', 'Sbm7', 'SbAcd11')
2.0 : ('P1', 'Sbm7', 'P8')
2.0 : ('P1', 'Sbm6', 'M9')
2.0 : ('P1', 'Sbd8', 'Sbd10')
2.0 : ('P1', 'Sbd5', 'Sbm7')
2.0 : ('P1', 'Sbd5', 'Grm7')
2.0 : ('P1', 'Sbd4', 'Sbd10')
2.0 : ('P1', 'Sbd3', 'Grm7')
2.0 : ('P1', 'SbSbd5', 'SbGrd7')
2.0 : ('P1', 'SbSbAcd4', 'Sbm6')
2.0 : ('P1', 'SbAcd4', 'P12')
2.0 : ('P1', 'SbAcd4', 'Acm6')
2.0 : ('P1', 'SbAc4', 'SbAcM6')
2.0 : ('P1', 'SbAc11', 'AcA13')
2.0 : ('P1', 'P8', 'SpA10')
2.0 : ('P1', 'P8', 'Sbd10')
2.0 : ('P1', 'M3', 'Sbm7')
2.0 : ('P1', 'Grm7', 'Sbm10')
2.0 : ('P1', 'Grm3', 'Sbd8')
2.0 : ('P1', 'Grd5', 'Sbd10')
2.0 : ('P1', 'Acd4', 'SbAcm6')
2.0 : ('P1', 'AcM6', 'SbAc11')
2.0 : ('P1', 'AcM3', 'SbAcd8')
2.0 : ('P1', 'AcM2', 'SpAcA4')
2.0 : ('P1', 'Ac5', 'SbAcm10')
2.0 : ('P1', 'A4', 'Sbm6')
2.0 : ('P1', 'A2', 'SbGrm7')
1.8571428571428572 : ('P1', 'SpM3', 'SpA4')
1.8333333333333333 : ('P1', 'SpGr5', 'SpGrM7')
1.8333333333333333 : ('P1', 'Sb5', 'AcA9')
1.8 : ('P1', 'm3', 'SpA11')
1.8 : ('P1', 'SpGrM3', 'SpA8')
1.8 : ('P1', 'SpA2', 'SpA3')
1.8 : ('P1', 'Sbd4', 'SbGrm7')
1.8 : ('P1', 'Sbd4', 'Grd5')
1.8 : ('P1', 'Sb4', 'M6')
1.8 : ('P1', 'P8', 'SpA11')
1.8 : ('P1', 'P5', 'SpM6')
1.8 : ('P1', 'M3', 'SpGrM7')
1.75 : ('P1', 'Spm6', 'Sp11')
1.75 : ('P1', 'SpM3', 'SpSpGrA5')
1.75 : ('P1', 'SpM3', 'SpGrM7')
1.75 : ('P1', 'SpM2', 'SpM6')
1.75 : ('P1', 'SpGrm7', 'SpM10')
1.75 : ('P1', 'Sp4', 'Spm6')
1.75 : ('P1', 'Sbm3', 'SbAc11')
1.75 : ('P1', 'Sbd8', 'm10')
1.75 : ('P1', 'Sbd5', 'm10')
1.75 : ('P1', 'Sbd3', 'd5')
1.75 : ('P1', 'SbAc4', 'P8')
1.75 : ('P1', 'Sb5', 'SbSbm10')
1.75 : ('P1', 'M2', 'Sbm7')
1.7142857142857142 : ('P1', 'SbAcm2', 'Ac4')
1.6666666666666667 : ('P1', 'm6', 'SbAc11')
1.6666666666666667 : ('P1', 'm3', 'Sbm6')
1.6666666666666667 : ('P1', 'm3', 'SbSbAcm6')
1.6666666666666667 : ('P1', 'SpM3', 'd5')
1.6666666666666667 : ('P1', 'SpM2', 'SpGr5')
1.6666666666666667 : ('P1', 'SpM2', 'SpA5')
1.6666666666666667 : ('P1', 'SpA4', 'SpA5')
1.6666666666666667 : ('P1', 'SpA3', 'SpM7')
1.6666666666666667 : ('P1', 'SpA3', 'SpA8')
1.6666666666666667 : ('P1', 'SpA2', 'SpA8')
1.6666666666666667 : ('P1', 'Sbm6', 'Sb8')
1.6666666666666667 : ('P1', 'Sbm3', 'P8')
1.6666666666666667 : ('P1', 'SbAcm3', 'SbAc4')
1.6666666666666667 : ('P1', 'SbAcM2', 'AcA4')
1.6666666666666667 : ('P1', 'SbAc4', 'AcA9')
1.6666666666666667 : ('P1', 'P5', 'SpGrM7')
1.6666666666666667 : ('P1', 'P5', 'Sbd10')
1.6666666666666667 : ('P1', 'M3', 'Sbm6')
1.6666666666666667 : ('P1', 'M2', 'SpA10')
1.6666666666666667 : ('P1', 'Gr5', 'Sbm10')
1.6666666666666667 : ('P1', 'AcA2', 'SbAcM6')
1.6666666666666667 : ('P1', 'AcA2', 'SbAc4')
1.6 : ('P1', 'm7', 'SbAcm9')
1.6 : ('P1', 'SpM2', 'Sbd5')
1.6 : ('P1', 'SpA4', 'SpGrm7')
1.6 : ('P1', 'SpA3', 'SpGr5')
1.6 : ('P1', 'Sbm7', 'AcM9')
1.6 : ('P1', 'Sbm3', 'A4')
1.6 : ('P1', 'Sbd3', 'm6')
1.6 : ('P1', 'P4', 'Sbm7')
1.5 : ('P1', 'm3', 'Sbm7')
1.5 : ('P1', 'm3', 'Sb5')
1.5 : ('P1', 'SpM6', 'Sp11')
1.5 : ('P1', 'SpM3', 'SpM9')
1.5 : ('P1', 'SpM3', 'SpA6')
1.5 : ('P1', 'SpGrm7', 'SpA11')
1.5 : ('P1', 'SpGrM3', 'Spm6')
1.5 : ('P1', 'SpGrM3', 'SpGrm7')
1.5 : ('P1', 'SpAcM6', 'Ac11')
1.5 : ('P1', 'SpAcA2', 'Ac4')
1.5 : ('P1', 'SpA5', 'SpM9')
1.5 : ('P1', 'SpA5', 'SpGrM7')
1.5 : ('P1', 'SpA2', 'SpA10')
1.5 : ('P1', 'Sp4', 'SpGrM7')
1.5 : ('P1', 'Sbm2', 'Sb4')
1.5 : ('P1', 'Sbd5', 'SbSbd7')
1.5 : ('P1', 'Sbd4', 'Sbd11')
1.5 : ('P1', 'SbSbm3', 'Sbm6')
1.5 : ('P1', 'SbAcm2', 'SbSbd5')
1.5 : ('P1', 'SbAc4', 'P5')
1.5 : ('P1', 'SbAc4', 'AcM9')
1.5 : ('P1', 'Sb5', 'Grm7')
1.5 : ('P1', 'Sb4', 'GrM10')
1.5 : ('P1', 'M6', 'Sb8')
1.5 : ('P1', 'M3', 'Sb5')
1.5 : ('P1', 'Grm3', 'Sb4')
1.5 : ('P1', 'Acm6', 'SbAcd11')
1.5 : ('P1', 'AcA1', 'SbAcm6')
1.5 : ('P1', 'A5', 'Sb8')
1.4 : ('P1', 'SpA4', 'SpA8')
1.4 : ('P1', 'Sbm3', 'P4')
1.4 : ('P1', 'Sbd5', 'M7')
1.4 : ('P1', 'SbAcM6', 'P12')
1.3333333333333333 : ('P1', 'd4', 'Sbd10')
1.3333333333333333 : ('P1', 'SpSpA2', 'SpM6')
1.3333333333333333 : ('P1', 'SpM6', 'SpA8')
1.3333333333333333 : ('P1', 'SpM6', 'P12')
1.3333333333333333 : ('P1', 'SpM3', 'SpA3')
1.3333333333333333 : ('P1', 'SpM3', 'SpA11')
1.3333333333333333 : ('P1', 'SpM3', 'SbAcm13')
1.3333333333333333 : ('P1', 'SpGrm7', 'SpA8')
1.3333333333333333 : ('P1', 'SpGrm3', 'm6')
1.3333333333333333 : ('P1', 'SpGrm3', 'SpGrM7')
1.3333333333333333 : ('P1', 'SpGrm3', 'Sp8')
1.3333333333333333 : ('P1', 'SpGrM7', 'SpM10')
1.3333333333333333 : ('P1', 'SpGrA5', 'SpA6')
1.3333333333333333 : ('P1', 'SpGr5', 'SpM10')
1.3333333333333333 : ('P1', 'SpA4', 'SpA12')
1.3333333333333333 : ('P1', 'Sp5', 'SpGrM7')
1.3333333333333333 : ('P1', 'Sbm6', 'SpGrM10')
1.3333333333333333 : ('P1', 'Sbm3', 'Sb5')
1.3333333333333333 : ('P1', 'Sbm10', 'm13')
1.3333333333333333 : ('P1', 'Sbd5', 'Sbd12')
1.3333333333333333 : ('P1', 'Sbd4', 'Grd7')
1.3333333333333333 : ('P1', 'SbSbm6', 'SbSbd8')
1.3333333333333333 : ('P1', 'SbAcm9', 'SbAc11')
1.3333333333333333 : ('P1', 'SbAc4', 'AcA6')
1.3333333333333333 : ('P1', 'Sb5', 'M7')
1.3333333333333333 : ('P1', 'P5', 'SbAc11')
1.3333333333333333 : ('P1', 'P4', 'SbM10')
1.3333333333333333 : ('P1', 'M6', 'SpM9')
1.3333333333333333 : ('P1', 'M6', 'Sbd8')
1.3333333333333333 : ('P1', 'M3', 'SpM9')
1.3333333333333333 : ('P1', 'M10', 'SbAcM13')
1.3333333333333333 : ('P1', 'Grd3', 'Sbd6')
1.3333333333333333 : ('P1', 'AcA2', 'Sb5')
1.3333333333333333 : ('P1', 'Ac4', 'SbAcm10')
1.3333333333333333 : ('P1', 'A4', 'Sbm10')
1.25 : ('P1', 'SpSpGrA5', 'P8')
1.25 : ('P1', 'SpM9', 'Sbd11')
1.25 : ('P1', 'SpM2', 'SpGrm7')
1.25 : ('P1', 'SpGrM3', 'Sp8')
1.25 : ('P1', 'SpA3', 'SpGrM7')
1.25 : ('P1', 'SpA1', 'SpGrm7')
1.25 : ('P1', 'SpA1', 'SpGr5')
1.25 : ('P1', 'Sbm6', 'SbSbd7')
1.25 : ('P1', 'SbSbAcd4', 'SbAcM13')
1.25 : ('P1', 'SbAcd4', 'd5')
1.25 : ('P1', 'Sb5', 'A11')
1.25 : ('P1', 'M3', 'Sbd5')
1.25 : ('P1', 'GrM6', 'SbGrm7')
1.2 : ('P1', 'SpA1', 'SpA3')
1.2 : ('P1', 'Sbd3', 'm3')
...
A bunch of these intervals I find pretty suspicious; I think they're probably not representing simple septimal sounds. Rather they're consonant to my ear because they're approximating other frequency ratios, like 3-limit ratios or 5-limit ratios or even irrational 12-EDO frequency ratios, which my ear is unfortunately also accustomed to and sometimes picks out as consonant.
The next step of my investigation is to go through the more consonant chords and try to figure out which ones are actually septimal in character, and then I can piece together some heuristics for building consonant septimal chords, which can then be used as constraints in composing counterpoint and other polyphony.
There are other options for judging chordal consonance programmatically - I could use a Sethares-inspired psychoacoustic model of polyphonic audition (which I think would work fairly well but is overkill as a thing to include in a program for composing) or I could look at complexity of the chord's otonal representation (which I think is nonsense psychoacoustically but it would be easy). But my program of reverse engineering chords that I like worked well when I learned/invented heuristics for composing in 5-limit just intonation and I think it will continue to serve me well in 7-limit.
...
When I look through all the internal intervals within the harmonious-rated chords above, a lot of the frequency ratios of internal intervals are close to 5-limit ratios - off by a factor of 225/224, which is like 7 cents. The interval justly associated with 225/224 is called the septimal super augmented zeroth, SpA0. I'm going to use this fact to figure out which of the chords are not really septimal.
First I define the basis for a tunings system
(SpA0, Sbm7, P8, M3)
In the rank-4 Lilley Johnston comma basis, this basis is written
((0, 0, -1, 1), (3, 10, 6, -1), (3, 12, 7, 0), (1, 4, 2, 0))
This has a determinant of 2, which will be important shortly. The basis intervals are justly tuned to (225/224, 7/4, 2/1, 5/4), but I'm going to define a tuning system that tempers out the first interval, SpA0.
(SpA0, Sbm7, P8, M3) -> (1/1, 7/4, 2/1, 5/4)
Now we have the pieces we need to tune arbitrary rank-4 intervals in a system that tempers out SpA0, and therefore assigns equal frequency ratios to two intervals that differ by SpA0. I can go through chords and look at their intervals and say for each one, "Is there an interval with these same tempered coordinates / the same frequency ratio that has a shorter name? If so, let's make a new chord where the intervals are simplified and we'll see that some of these harmonious chords with complex rank-4 intervals were functioning as harmonious chords with only rank-3 intervals, as far as someone with pitch discrimination around 7 cents can discern."
I am also interested in using this temperament procedure to replace complex intervals with simpler intervals of a different kind - those with lower prime-rank, rather than shorter/simpler names. And I suppose I could combine these two: like if Grm7 and Sbm7 happened to have the same tempered coordinates, then I could prefer to spell by chords with Grm7 on account of it being 5-limit. I think that's worth exploring at some point, but first I'm just going to use short interval names as my measure of complexity, and given two interval names of equal length, I'm going to prefer ones which come earlier in the list of intervals I added to a list as they became relevant when I was playing around with septimal chords. This is kind of arbitrary, but I don't think it's exactly wrong to say "these intervals are in practice more important, so I'm going to use them in my future analyses".
We could also use a measure of just-frequency-ratio complexity to judge which of two intervals is simpler when they have the same tempered coordinates. Lots of options. For another time.
...
Okay, so the super augmented third, SpA3 showed up a few times in my harmonious septimal chords. This differs from P4 by SpA0, and P4 is way simpler, so I'm going to reinterpret all the SpA3s as being not really septimal. Like [P1, SpA3, M6] should be called [P1, P4, M6], which is an inversion of [P4, M6, P8] which is a major chord rooted on P4, like F.maj in they key of C major. Not septimal.
Likewise our temperament maps Sbd6 to P5. Not septimal. I'm replacing SpGrA5 with Grm6. I'm replacing SpSpM3 with Spd4. And SbAcd4 becomes AcM3. And Sbd3 becomes AcM2. And SbAcd11 is AcM10. And SpA6 becomes Grm7.
Using the tempering procedure, SbSb4 becomes SbA3. But neither one of these are particularly useful/functional/interpretable intervals. But they're both within 6 cents of AcM3. And that's how I'll treat them. This is like tempering out the intervals justly associated with 19683/19600 or 4375/4374 (a schisma off from SpA0), respectively. I think I'd also like to push SpGrM3 and Grd4 to AcM3.
My tempering procedure would turn SpGr5 into Grd6, which is like {32/21 -> 1024/675}. Neither one makes much sense to me. I think I'll stick with the first one. There really isn't much nearby that's simpler for frequency ratios other than P5. I suppose I should listen to the chord with P5 instead of SpGr5 to see which is better.
Due to my kind of arbitrary preference ordering of intervals that have the same length names, the temperament procedure actually introduced a septimal interval where it hadn't been before: I stand by AcA2 being re-interpreted as Sbm3, so now the harmonious chord [P1, AcA2, Sbm7] has an interpretation that' seven more septimal, [P1, Sbm3, Sbm7]. And {AcA2 -> Sbm3} looks like {75/64 -> 7/6} in frequency space, so that's attractive. Sbd10 tempers the same as the simpler AcM9, which is {56/25 -> 9/4}. And an octave down, Sbd3 goes to AcM2, which looks like {28/25 -> 9/8}.
These tempered substitutions look at a little suspicious to me:
SbSb4 -> SbA3
SbSbm6 -> SbA5
SpGrM3 -> Grd4
SpGr5 -> Grd6