My last post on this topic is becoming quite messy, but I haven't figured things out quite well enough that I can delete and rewrite.
24-EDO is a tuning system with a single generating interval size, so we may call it rank-1 in /frequency/ space. However, to analyze it in terms of intervals, we need to go to a much higher rank in /interval/ space. Let me explain.
Many EDOs can be defined over rank-2 interval space by defining a tuning system which has, as a basis, a purely tuned octave and a second interval which is "tempered", i.e. tuned to a frequency ratio of 1/1. However, there is no rank-2 interval that can be tempered out to produce 24-EDO. Neither are there two rank-3 intervals that can be tempered while keeping the octave pure. If you try to do it, all of the intervals in your interval space will fall on the 12-EDO subset. In order to analyze 24-EDO music intervallically, you need to go up to at least rank-4 interval space, at which point you get neutral intervals like the septimal super-major second, SpM2, or the septimal sub-minor third, Sbm3.
It took me a while to figure out how to predict that minimal rank of the interval space associated with an EDO, but I've done it. Consider a definition of 24-EDO in which we tune {the intervals justly associated to the prime harmonics} to the respective nearest steps of 24-EDO. Below I show the 24-EDO steps for harmonics (2/1, 3/1, 5/1, 7/1, 11/1, 13/1, 17/1, 19/1):
[24, 38, 56, 67, 83, 89, 98, 102]
When I say 56 steps is how 24-EDO tunes the 5th harmonic, it would be more technically correct to say that we can define a 24-EDO which tunes the M17 (which is justly to to 5/1) to 2^(56/24). This is like 14 cents sharp of the pure value. To find the closest step, we find {i} which solves this equation
5/1 = 2^(i / 24)
and round it to the nearest integral step, so that 24-EDO tunes M17 to
round(24 * log_2(5))
which is 56.
You can see that the first three harmonics are all tuned to even values. If we define our rank-3 intervals by combinations of the first three harmonics and all of them are tuned to even steps, then of course we won't get any intervals tuned to odd steps, and the whole thing collapses to 12-EDO. The fact that the first prime harmonic tuned to an odd number of steps is the 7th harmonic, and the fact that 7 is the fourth prime, is most of the explanation of why 24-EDO is minimally analyzed with rank-4 interval space. But instead of looking for the first odd step, the general procedure is to look for the first point at which all the harmonics so far have no jointly common factor.
I'll say it again. The minimal-rank interval space needed to analyze a given EDO is found as the smallest number of sequential prime harmonics such that the set has {1} as its greatest common divisor.
Let's look at 60-EDO to investigate. Here are its prime harmonic intervals, up to the one justly tuned to 19/1, but now tuned to 60-EDO steps: [60, 95, 139, 168, 208, 222, 245, 255]. Brief inspection tells us that 60-EDO must be rank-3, based on these facts:
GCD(60) = 60
GCD(60, 95) = 5
GCD(60, 95, 139) = 1.
Here's the prime-harmonic GCD classification of EDOs:
rank-2: [5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 26, 27, 29, 31, 32, 33, 37, 39, 40, 41, 42, 43, 45, 46, 47, 49, 50, 53, 55, 56, 59, 61, 63, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 81, 83, 88, 89, 90, 91, 94, 95, 97, 98, 99]-EDO
rank-3: [10, 14, 15, 21, 25, 28, 34, 35, 48, 51, 52, 54, 58, 60, 72, 78, 84, 85, 87, 96]-EDO
rank-4: [6, 24, 36, 38, 57, 66, 68, 76, 86, 100]-EDO
rank-5: [20, 93]-EDO
rank-6: [30, 44, 62, 82]-EDO
rank-8: [92]-EDO
Here also is the prime harmonic GCD classification of EDOs with rank >= 6, for divisions below 600:
rank-6 : [30, 44, 62, 82, 136, 144, 218, 404, 478, 496, 510]-EDO
rank-7 : [174, 448, 540]-EDO
rank-8 : [92]-EDO
rank-9 : [322]-EDO
I haven't proved anything yet about when the definition of an EDO in this way, by rounding prime harmonics, will be equivalent to a definition in terms of tempering. But these ranks do match the ranks that I found by tempering (up to up to 100-EDO divisions at least) so that's encouraging.
Here are the commas that can be used to define the EDOs which are minimally associated to rank-2 interval space. The commas are written in prime harmonic coordinates, along with the basis matrix that includes the octave.
3-EDO: ([5, -3] → 32/27). Basis: ([1, 0], [5, -3])
5-EDO: ([8, -5] → 256/243). Basis: ([1, 0], [8, -5])
7-EDO: ([-11, 7] → 2187/2048). Basis: ([1, 0], [-11, 7])
8-EDO: ([13, -8] → 8192/6561). Basis: ([1, 0], [13, -8])
9-EDO: ([-14, 9] → 19683/16384). Basis: ([1, 0], [-14, 9])
11-EDO: ([-17, 11] → 177147/131072). Basis: ([1, 0], [-17, 11])
12-EDO: ([-19, 12] → 531441/524288). Basis: ([1, 0], [-19, 12])
13-EDO: ([21, -13] → 2097152/1594323). Basis: ([1, 0], [21, -13])
16-EDO: ([-25, 16] → 43046721/33554432). Basis: ([1, 0], [-25, 16])
17-EDO: ([27, -17] → 134217728/129140163). Basis: ([1, 0], [27, -17])
18-EDO: ([29, -18] → 536870912/387420489). Basis: ([1, 0], [29, -18])
19-EDO: ([-30, 19] → 1162261467/1073741824). Basis: ([1, 0], [-30, 19])
22-EDO: ([35, -22] → 34359738368/31381059609). Basis: ([1, 0], [35, -22])
23-EDO: ([-36, 23] → 94143178827/68719476736). Basis: ([1, 0], [-36, 23])
26-EDO: ([-41, 26] → 2541865828329/2199023255552). Basis: ([1, 0], [-41, 26])
27-EDO: ([43, -27] → 8796093022208/7625597484987). Basis: ([1, 0], [43, -27])
29-EDO: ([46, -29] → 70368744177664/68630377364883). Basis: ([1, 0], [46, -29])
31-EDO: ([-49, 31] → 617673396283947/562949953421312). Basis: ([1, 0], [-49, 31])
32-EDO: ([51, -32] → 2251799813685248/1853020188851841). Basis: ([1, 0], [51, -32])
33-EDO: ([-52, 33] → 5559060566555523/4503599627370496). Basis: ([1, 0], [-52, 33])
37-EDO: ([59, -37] → 576460752303423488/450283905890997363). Basis: ([1, 0], [59, -37])
39-EDO: ([62, -39] → 4611686018427387904/4052555153018976267). Basis: ([1, 0], [62, -39])
40-EDO: ([-63, 40] → 12157665459056928801/9223372036854775808). Basis: ([1, 0], [-63, 40])
41-EDO: ([65, -41] → 36893488147419103232/36472996377170786403). Basis: ([1, 0], [65, -41])
42-EDO: ([67, -42] → 147573952589676412928/109418989131512359209). Basis: ([1, 0], [67, -42])
43-EDO: ([-68, 43] → 328256967394537077627/295147905179352825856). Basis: ([1, 0], [-68, 43])
45-EDO: ([-71, 45] → 2954312706550833698643/2361183241434822606848). Basis: ([1, 0], [-71, 45])
46-EDO: ([73, -46] → 9444732965739290427392/8862938119652501095929). Basis: ([1, 0], [73, -46])
47-EDO: ([-74, 47] → 26588814358957503287787/18889465931478580854784). Basis: ([1, 0], [-74, 47])
49-EDO: ([78, -49] → 302231454903657293676544/239299329230617529590083). Basis: ([1, 0], [78, -49])
50-EDO: ([-79, 50] → 717897987691852588770249/604462909807314587353088). Basis: ([1, 0], [-79, 50])
53-EDO: ([-84, 53] → 19383245667680019896796723/19342813113834066795298816). Basis: ([1, 0], [-84, 53])
55-EDO: ([-87, 55] → 174449211009120179071170507/154742504910672534362390528). Basis: ([1, 0], [-87, 55])
56-EDO: ([89, -56] → 618970019642690137449562112/523347633027360537213511521). Basis: ([1, 0], [89, -56])
59-EDO: ([94, -59] → 19807040628566084398385987584/14130386091738734504764811067). Basis: ([1, 0], [94, -59])
61-EDO: ([97, -61] → 158456325028528675187087900672/127173474825648610542883299603). Basis: ([1, 0], [97, -61])
63-EDO: ([100, -63] → 1267650600228229401496703205376/1144561273430837494885949696427). Basis: ([1, 0], [100, -63])
64-EDO: ([-101, 64] → 3433683820292512484657849089281/2535301200456458802993406410752). Basis: ([1, 0], [-101, 64])
65-EDO: ([-103, 65] → 10301051460877537453973547267843/10141204801825835211973625643008). Basis: ([1, 0], [-103, 65])
67-EDO: ([-106, 67] → 92709463147897837085761925410587/81129638414606681695789005144064). Basis: ([1, 0], [-106, 67])
69-EDO: ([-109, 69] → 834385168331080533771857328695283/649037107316853453566312041152512). Basis: ([1, 0], [-109, 69])
70-EDO: ([111, -70] → 2596148429267413814265248164610048/2503155504993241601315571986085849). Basis: ([1, 0], [111, -70])
71-EDO: ([113, -71] → 10384593717069655257060992658440192/7509466514979724803946715958257547). Basis: ([1, 0], [113, -71])
73-EDO: ([116, -73] → 83076749736557242056487941267521536/67585198634817523235520443624317923). Basis: ([1, 0], [116, -73])
74-EDO: ([-117, 74] → 202755595904452569706561330872953769/166153499473114484112975882535043072). Basis: ([1, 0], [-117, 74])
75-EDO: ([119, -75] → 664613997892457936451903530140172288/608266787713357709119683992618861307). Basis: ([1, 0], [119, -75])
77-EDO: ([-122, 77] → 5474401089420219382077155933569751763/5316911983139663491615228241121378304). Basis: ([1, 0], [-122, 77])
79-EDO: ([-125, 79] → 49269609804781974438694403402127765867/42535295865117307932921825928971026432). Basis: ([1, 0], [-125, 79])
80-EDO: ([127, -80] → 170141183460469231731687303715884105728/147808829414345923316083210206383297601). Basis: ([1, 0], [127, -80])
81-EDO: ([-128, 81] → 443426488243037769948249630619149892803/340282366920938463463374607431768211456). Basis: ([1, 0], [-128, 81])
83-EDO: ([132, -83] → 5444517870735015415413993718908291383296/3990838394187339929534246675572349035227). Basis: ([1, 0], [132, -83])
88-EDO: ([-139, 88] → 969773729787523602876821942164080815560161/696898287454081973172991196020261297061888). Basis: ([1, 0], [-139, 88])
89-EDO: ([-141, 89] → 2909321189362570808630465826492242446680483/2787593149816327892691964784081045188247552). Basis: ([1, 0], [-141, 89])
90-EDO: ([143, -90] → 11150372599265311570767859136324180752990208/8727963568087712425891397479476727340041449). Basis: ([1, 0], [143, -90])
91-EDO: ([-144, 91] → 26183890704263137277674192438430182020124347/22300745198530623141535718272648361505980416). Basis: ([1, 0], [-144, 91])
94-EDO: ([149, -94] → 713623846352979940529142984724747568191373312/706965049015104706497203195837614914543357369). Basis: ([1, 0], [149, -94])
95-EDO: ([151, -95] → 2854495385411919762116571938898990272765493248/2120895147045314119491609587512844743630072107). Basis: ([1, 0], [151, -95])
97-EDO: ([154, -97] → 22835963083295358096932575511191922182123945984/19088056323407827075424486287615602692670648963). Basis: ([1, 0], [154, -97])
98-EDO: ([-155, 98] → 57264168970223481226273458862846808078011946889/45671926166590716193865151022383844364247891968). Basis: ([1, 0], [-155, 98])
99-EDO: ([157, -99] → 182687704666362864775460604089535377456991567872/171792506910670443678820376588540424234035840667). Basis: ([1, 0], [157, -99])
5-EDO: (m2 → 256/243)
7-EDO: (A1 → 2187/2048)
8-EDO: (d4 → 8192/6561)
9-EDO: (A2 → 19683/16384)
11-EDO: (A3 → 177147/131072)
12-EDO: (A0 → 531441/524288)
13-EDO: (dd5 → 2097152/1594323)
16-EDO: (AA2 → 43046721/33554432)
17-EDO: (dd3 → 134217728/129140163)
18-EDO: (dd6 → 536870912/387420489)
19-EDO: (AA0 → 1162261467/1073741824)
and here's a rank-2 reduction graph:
256/243: 5 ← (10, 15, 20, 25, 30)
2187/2048: 7 ← (14, 21, 28, 35)
531441/524288: 12 ← (24, 36, 48, 60, 72, 84, 96)
134217728/129140163: 17 ← (34, 51, 68, 85)
1162261467/1073741824: 19 ← (38, 57, 76)
34359738368/31381059609: 22 ← (44, 66)
2541865828329/2199023255552: 26 ← (52)
8796093022208/7625597484987: 27 ← (54)
70368744177664/68630377364883: 29 ← (58, 87)
617673396283947/562949953421312: 31 ← (62, 93)
4611686018427387904/4052555153018976267: 39 ← (78)
36893488147419103232/36472996377170786403: 41 ← (82)
328256967394537077627/295147905179352825856: 43 ← (86)
9444732965739290427392/8862938119652501095929: 46 ← (92)
Here are rank-3 definitions of some EDOs, including some that could be defined in rank-2:
3-EDO: (M2 → 10/9, m2 → 16/15). Basis: ([1, 0, 0], [1, -2, 1], [4, -1, -1])
4-EDO: (AcM2 → 9/8 , A1 → 25/24). Basis: ([1, 0, 0], [-3, 2, 0], [-3, -1, 2])
5-EDO: (m2 → 16/15 , Acm2 → 27/25). Basis: ([1, 0, 0], [4, -1, -1], [0, 3, -2])
7-EDO: (A1 → 25/24 , Ac1 → 81/80). Basis: ([1, 0, 0], [-3, -1, 2], [-4, 4, -1])
8-EDO: (m2 → 16/15 , GrA1 → 250/243). Basis: ([1, 0, 0], [4, -1, -1], [1, -5, 3])
9-EDO: (Acm2 → 27/25 , d2 → 128/125). Basis: ([1, 0, 0], [0, 3, -2], [7, 0, -3])
10-EDO: (A1 → 25/24 , Grm2 → 256/243). Basis: ([1, 0, 0], [-3, -1, 2], [8, -5, 0])
11-EDO: (AcA1 → 135/128 , d3 → 144/125). Basis: ([1, 0, 0], [-7, 3, 1], [4, 2, -3])
12-EDO: (Ac1 → 81/80 , d2 → 128/125). Basis: ([1, 0, 0], [-4, 4, -1], [7, 0, -3])
13-EDO: (A1 → 25/24 , GrGrm3 → 2560/2187). Basis: ([1, 0, 0], [-3, -1, 2], [9, -7, 1])
14-EDO: (Acm2 → 27/25 , Grd2 → 2048/2025). Basis: ([1, 0, 0], [0, 3, -2], [11, -4, -2])
15-EDO: (d2 → 128/125 , GrA1 → 250/243). Basis: ([1, 0, 0], [7, 0, -3], [1, -5, 3])
16-EDO: (AcA1 → 135/128 , dAcm2 → 648/625). Basis: ([1, 0, 0], [-7, 3, 1], [3, 4, -4])
17-EDO: (A1 → 25/24 , GrGrm2 → 20480/19683). Basis: ([1, 0, 0], [-3, -1, 2], [12, -9, 1])
18-EDO: (d2 → 128/125 , GrM2 → 800/729). Basis: ([1, 0, 0], [7, 0, -3], [5, -6, 2])
19-EDO: (Ac1 → 81/80 , dd0 → 3125/3072). Basis: ([1, 0, 0], [-4, 4, -1], [-10, -1, 5])
21-EDO: (d2 → 128/125 , AcAcA1 → 2187/2048). Basis: ([1, 0, 0], [7, 0, -3], [-11, 7, 0])
22-EDO: (GrA1 → 250/243 , Grd2 → 2048/2025). Basis: ([1, 0, 0], [1, -5, 3], [11, -4, -2])
23-EDO: (AcA1 → 135/128 , dAcAcm2 → 6561/6250). Basis: ([1, 0, 0], [-7, 3, 1], [-1, 8, -5])
25-EDO: (Grm2 → 256/243 , dd0 → 3125/3072). Basis: ([1, 0, 0], [8, -5, 0], [-10, -1, 5])
26-EDO: (Ac1 → 81/80 , ddd0 → 78125/73728). Basis: ([1, 0, 0], [-4, 4, -1], [-13, -2, 7])
27-EDO: (d2 → 128/125 , GrGrA1 → 20000/19683). Basis: ([1, 0, 0], [7, 0, -3], [5, -9, 4])
28-EDO: (dAcm2 → 648/625 , AcAcA1 → 2187/2048). Basis: ([1, 0, 0], [3, 4, -4], [-11, 7, 0])
29-EDO: (GrA1 → 250/243 , Grdd0 → 16875/16384). Basis: ([1, 0, 0], [1, -5, 3], [-14, 3, 4])
31-EDO: (Ac1 → 81/80 , Grdddd3 → 393216/390625). Basis: ([1, 0, 0], [-4, 4, -1], [17, 1, -8])
32-EDO: (Grd2 → 2048/2025 , GrAA1 → 3125/2916). Basis: ([1, 0, 0], [11, -4, -2], [-2, -6, 5])
33-EDO: (d2 → 128/125 , AcAcAcA1 → 177147/163840). Basis: ([1, 0, 0], [7, 0, -3], [-15, 11, -1])
34-EDO: (Grd2 → 2048/2025 , ddAcm0 → 15625/15552). Basis: ([1, 0, 0], [11, -4, -2], [-6, -5, 6])
35-EDO: (AcAcA1 → 2187/2048 , dd0 → 3125/3072). Basis: ([1, 0, 0], [-11, 7, 0], [-10, -1, 5])
37-EDO: (GrA1 → 250/243 , GrGrddd3 → 262144/253125). Basis: ([1, 0, 0], [1, -5, 3], [18, -4, -5])
39-EDO: (d2 → 128/125 , ddAcAcAcm2 → 1594323/1562500). Basis: ([1, 0, 0], [7, 0, -3], [-2, 13, -8])
40-EDO: (dAcm2 → 648/625 , AcAcAcA1 → 177147/163840). Basis: ([1, 0, 0], [3, 4, -4], [-15, 11, -1])
41-EDO: (dd0 → 3125/3072 , GrGrA1 → 20000/19683). Basis: ([1, 0, 0], [-10, -1, 5], [5, -9, 4])
42-EDO: (d2 → 128/125 , GrGrGrAA1 → 5000000/4782969). Basis: ([1, 0, 0], [7, 0, -3], [6, -14, 7])
43-EDO: (Ac1 → 81/80 , Grdddddd4 → 50331648/48828125). Basis: ([1, 0, 0], [-4, 4, -1], [24, 1, -11])
45-EDO: (Ac1 → 81/80 , GrGrdddddd-1 → 146484375/134217728). Basis: ([1, 0, 0], [-4, 4, -1], [-27, 1, 11])
46-EDO: (Grd2 → 2048/2025 , ddAcAcm2 → 78732/78125). Basis: ([1, 0, 0], [11, -4, -2], [2, 9, -7])
47-EDO: (dAcAcm2 → 6561/6250 , Grdd0 → 16875/16384). Basis: ([1, 0, 0], [-1, 8, -5], [-14, 3, 4])
48-EDO: (Grdd0 → 16875/16384 , GrGrA1 → 20000/19683). Basis: ([1, 0, 0], [-14, 3, 4], [5, -9, 4])
49-EDO: (ddAcm0 → 15625/15552 , GrGrm2 → 20480/19683). Basis: ([1, 0, 0], [-6, -5, 6], [12, -9, 1])
50-EDO: (Ac1 → 81/80 , Grddddddd-2 → 1220703125/1207959552). Basis: ([1, 0, 0], [-4, 4, -1], [-27, -2, 13])
51-EDO: (GrA1 → 250/243 , GrGrddddd-1 → 17578125/16777216). Basis: ([1, 0, 0], [1, -5, 3], [-24, 2, 9])
52-EDO: (dAcm2 → 648/625 , GrGrGrdd0 → 4428675/4194304). Basis: ([1, 0, 0], [3, 4, -4], [-22, 11, 2])
53-EDO: (ddAcm0 → 15625/15552 , GrGrd0 → 32805/32768). Basis: ([1, 0, 0], [-6, -5, 6], [-15, 8, 1])
54-EDO: (Grd2 → 2048/2025 , GrGrAAA1 → 390625/354294). Basis: ([1, 0, 0], [11, -4, -2], [-1, -11, 8])
55-EDO: (Ac1 → 81/80 , GrGrdddddddd5 → 6442450944/6103515625). Basis: ([1, 0, 0], [-4, 4, -1], [31, 1, -14])
56-EDO: (Grd2 → 2048/2025 , dddAcAcm0 → 1953125/1889568). Basis: ([1, 0, 0], [11, -4, -2], [-5, -10, 9])
58-EDO: (Grd2 → 2048/2025 , ddAcAcAcm2 → 1594323/1562500). Basis: ([1, 0, 0], [11, -4, -2], [-2, 13, -8])
59-EDO: (GrA1 → 250/243 , GrGrdddddd4 → 268435456/263671875). Basis: ([1, 0, 0], [1, -5, 3], [28, -3, -10])
60-EDO: (dd0 → 3125/3072 , GrGrGrd0 → 531441/524288). Basis: ([1, 0, 0], [-10, -1, 5], [-19, 12, 0])
61-EDO: (GrGrA1 → 20000/19683 , GrGrddd3 → 262144/253125). Basis: ([1, 0, 0], [5, -9, 4], [18, -4, -5])
63-EDO: (dd0 → 3125/3072 , GrGrGrm2 → 1638400/1594323). Basis: ([1, 0, 0], [-10, -1, 5], [16, -13, 2])
64-EDO: (dAcm2 → 648/625 , GrGrGrGrdd0 → 71744535/67108864). Basis: ([1, 0, 0], [3, 4, -4], [-26, 15, 1])
65-EDO: (GrGrd0 → 32805/32768 , ddAcAcm2 → 78732/78125). Basis: ([1, 0, 0], [-15, 8, 1], [2, 9, -7])
67-EDO: (Ac1 → 81/80 , GrGrddddddddd6 → 824633720832/762939453125). Basis: ([1, 0, 0], [-4, 4, -1], [38, 1, -17])
69-EDO: (Ac1 → 81/80 , GrGrGrdddddddddd-3 → 2288818359375/2199023255552). Basis: ([1, 0, 0], [-4, 4, -1], [-41, 1, 17])
70-EDO: (Grd2 → 2048/2025 , ddddAcAcm3 → 51018336/48828125). Basis: ([1, 0, 0], [11, -4, -2], [5, 13, -11])
71-EDO: (GrGrm2 → 20480/19683 , Grdddd3 → 393216/390625). Basis: ([1, 0, 0], [12, -9, 1], [17, 1, -8])
72-EDO: (ddAcm0 → 15625/15552 , GrGrGrd0 → 531441/524288). Basis: ([1, 0, 0], [-6, -5, 6], [-19, 12, 0])
73-EDO: (ddAcAcm2 → 78732/78125 , GrGrddd3 → 262144/253125). Basis: ([1, 0, 0], [2, 9, -7], [18, -4, -5])
74-EDO: (Ac1 → 81/80 , GrGrdddddddddd6 → 19791209299968/19073486328125). Basis: ([1, 0, 0], [-4, 4, -1], [41, 2, -19])
75-EDO: (GrGrA1 → 20000/19683 , GrGrdddd-1 → 2109375/2097152). Basis: ([1, 0, 0], [5, -9, 4], [-21, 3, 7])
77-EDO: (GrGrd0 → 32805/32768 , ddAcAcAcm2 → 1594323/1562500). Basis: ([1, 0, 0], [-15, 8, 1], [-2, 13, -8])
78-EDO: (Grd2 → 2048/2025 , ddddAcAcAcm0 → 244140625/229582512). Basis: ([1, 0, 0], [11, -4, -2], [-4, -15, 12])
79-EDO: (dd0 → 3125/3072 , GrGrGrGrd0 → 43046721/41943040). Basis: ([1, 0, 0], [-10, -1, 5], [-23, 16, -1])
80-EDO: (Grd2 → 2048/2025 , dddAcAcAcAcm0 → 390625000/387420489). Basis: ([1, 0, 0], [11, -4, -2], [3, -18, 11])
81-EDO: (Ac1 → 81/80 , GrGrGrddddddddddd-4 → 286102294921875/281474976710656). Basis: ([1, 0, 0], [-4, 4, -1], [-48, 1, 20])
83-EDO: (ddAcm0 → 15625/15552 , GrGrGrGrdd3 → 8388608/7971615). Basis: ([1, 0, 0], [-6, -5, 6], [23, -13, -1])
84-EDO: (ddAcAcm2 → 78732/78125 , GrGrGrd0 → 531441/524288). Basis: ([1, 0, 0], [2, 9, -7], [-19, 12, 0])
85-EDO: (dd0 → 3125/3072 , GrGrGrGrGrdd3 → 134217728/129140163). Basis: ([1, 0, 0], [-10, -1, 5], [27, -17, 0])
87-EDO: (ddAcm0 → 15625/15552 , GrGrGrGrddd3 → 67108864/66430125). Basis: ([1, 0, 0], [-6, -5, 6], [26, -12, -3])
88-EDO: (Ac1 → 81/80 , GrGrGrdddddddddddd-4 → 2384185791015625/2251799813685248). Basis: ([1, 0, 0], [-4, 4, -1], [-51, 0, 22])
89-EDO: (GrGrd0 → 32805/32768 , ddddAcm3 → 10077696/9765625). Basis: ([1, 0, 0], [-15, 8, 1], [9, 9, -10])
90-EDO: (Grd2 → 2048/2025 , ddddAcAcAcAcm0 → 1220703125/1162261467). Basis: ([1, 0, 0], [11, -4, -2], [0, -19, 13])
91-EDO: (ddAcm0 → 15625/15552 , GrGrGrGrd0 → 43046721/41943040). Basis: ([1, 0, 0], [-6, -5, 6], [-23, 16, -1])
94-EDO: (GrGrd0 → 32805/32768 , dddAcAcAcm0 → 9765625/9565938). Basis: ([1, 0, 0], [-15, 8, 1], [-1, -14, 10])
95-EDO: (GrGrA1 → 20000/19683 , Grdddddd4 → 50331648/48828125). Basis: ([1, 0, 0], [5, -9, 4], [24, 1, -11])
96-EDO: (Grdddd3 → 393216/390625 , GrGrGrd0 → 531441/524288). Basis: ([1, 0, 0], [17, 1, -8], [-19, 12, 0])
97-EDO: (GrGrGrm2 → 1638400/1594323 , dddAcAcm0 → 1953125/1889568). Basis: ([1, 0, 0], [16, -13, 2], [-5, -10, 9])
98-EDO: (Ac1 → 81/80 , GrGrGrdddddddddddddd8 → 324259173170675712/298023223876953125). Basis: ([1, 0, 0], [-4, 4, -1], [55, 2, -25])
99-EDO: (Grdddd3 → 393216/390625 , GrGrGrA1 → 1600000/1594323). Basis: ([1, 0, 0], [17, 1, -8], [9, -13, 5])
...
Here are some reductions (of EDOs with division > 53 and <= 100) that still happen when you have rank-3 commas available.
19 ← (57)
31 ← (62)
22 ← (66)
34 ← (68)
19 ← (76)
41 ← (82)
43 ← (86)
46 ← (92)
31 ← (93)
50 ← (100)
.
Here are some rank-4 EDO definitions:
Rank-4 EDOs:
6-EDO: (M2 → 10/9, m2 → 16/15, SbSbAcm2 → 49/48). Basis matrix: ([1, 0, 0, 0], [1, -2, 1, 0], [4, -1, -1, 0], [-4, -1, 0, 2])
24-EDO: (SbSbAcm2 → 49/48, Ac1 → 81/80, d2 → 128/125). Basis matrix: ([1, 0, 0, 0], [-4, -1, 0, 2], [-4, 4, -1, 0], [7, 0, -3, 0])
36-EDO: (Ac1 → 81/80, d2 → 128/125, SbSbSbdd3 → 686/675). Basis matrix: ([1, 0, 0, 0], [-4, 4, -1, 0], [7, 0, -3, 0], [1, -3, -2, 3])
38-EDO: (SpSpGrA0 → 50/49, Ac1 → 81/80, AA0 → 3125/3072). Basis matrix: ([1, 0, 0, 0], [1, 0, 2, -2], [-4, 4, -1, 0], [-10, -1, 5, 0])
57-EDO: (Ac1 → 81/80, SbSbSbAcAcm2 → 1029/1024, AA0 → 3125/3072). Basis matrix: ([1, 0, 0, 0], [-4, 4, -1, 0], [-10, 1, 0, 3], [-10, -1, 5, 0])
66-EDO: (GrA1 → 250/243, SbSbSbdd3 → 686/675, SbSbSbAcAcm2 → 1029/1024). Basis matrix: ([1, 0, 0, 0], [1, -5, 3, 0], [1, -3, -2, 3], [-10, 1, 0, 3])
No comments:
Post a Comment